EconPapers    
Economics at your fingertips  
 

Effect of multi-component gases on the behavior and mechanism of carbon deposition in hydrogen-rich blast furnaces

Kexin Jiao, Guangxiang Feng, Jianliang Zhang, Cui Wang and Lei Zhang

Energy, 2023, vol. 263, issue PA

Abstract: Hydrogen-rich blast furnace is considered an advanced technology in the iron and steel industry for reducing carbon emissions at the source. The CO utilization is instead reduced due to the severe carbon deposition behavior after hydrogen enrichment. This paper quantitatively investigated the effect of CO–H2–H2O–N2 multi-component on carbon deposition behavior, and a formation mechanism of deposited carbon was proposed finally. The results revealed that the optimum temperature range for carbon deposition was about 470–900 °C, and the maximum rate of carbon deposition was reached at 550–700 °C. At 600 °C, the carbon deposition rate for 100%CO and 40%CO–60%N2 were 0.54 g/d and 0.13 g/d, respectively. The aggravating effect of H2 to carbon deposition was 5.2 times that of H2O. Whereas the carbon deposition will be constrained in low CO and high H2 environment. The SEM showed that the morphology of the deposited carbon was filamentous, its formation mechanism on the iron surface is: (a) Adsorption of gases on the iron surface, (b) Formation of Fe3C layer, (c) Deposition of graphite layer, (d) Decomposition of Fe3C layer, (e) Formation of Fe3C–Fe + C (diss.) catalytic particles, (f) Formation of filamentous carbon, (g) Carbon activity in metallic Fe-filamentous carbon.

Keywords: Hydrogen-rich blast furnace; Carbon deposition; Carbon deposition rate; Filamentous carbon; Formation mechanism (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222024008
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024008

DOI: 10.1016/j.energy.2022.125518

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024008