A probabilistic approach to potential estimation of renewable energy resources based on augmented spatial interpolation
Gyeongmin Kim and
Jin Hur
Energy, 2023, vol. 263, issue PA
Abstract:
Renewable energy resources have garnered considerable attention owing to concerns regarding climate change mitigation and sustainability. The performance of renewable energy resources varies based on weather conditions, which is an important consideration in power system planning as renewable energy penetration increases. In this study, a probabilistic approach for the potential estimation of renewable energy resources based on augmented spatial interpolation was proposed. The proposed algorithm was verified using empirical data obtained from wind farms in Jeju Island. Wind power output scenarios were modeled through ordinary kriging and Monte Carlo simulations. Moreover, the point and cause of line overload according to the seasonal wind power output and power demand were analyzed through transmission security analysis, and the frequency and scale of the curtailments were estimated. This can be used to estimate potential renewable energy resources and establish a power system operation plan. Further study includes the development of stable power system operation plans for large-scale renewable energy resource-integrated power systems.
Keywords: Renewable energy resource; Augmented spatial interpolation; Ordinary kriging; Capacity factor; Monte Carlo simulation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222024689
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024689
DOI: 10.1016/j.energy.2022.125582
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().