EconPapers    
Economics at your fingertips  
 

Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach

Dongchuan Yang, Ju-e Guo, Yanzhao Li, Shaolong Sun and Shouyang Wang

Energy, 2023, vol. 263, issue PA

Abstract: Short-term load forecasting has evolved into an important aspect of power system in safe operation and rational dispatching. However, given the load series' instability and volatility, this is a challenging task. To this end, this study proposes a dynamic decomposition-reconstruction-ensemble approach by cleverly and dynamically combining two proven and effective techniques (i.e., the reconstruction techniques and the secondary decomposition techniques). In fact, by introducing the decomposition-reconstruction process based on the dynamic classification, filtering, and giving the criteria for determining the components that need to be decomposed again, our proposed model improves the decomposition-ensemble forecasting framework. Our proposed model makes full use of decomposition techniques, complexity analysis, reconstruction techniques, secondary decomposition techniques, and a neural network optimized by an automatic hyperparameter optimization algorithm. Besides, we compared our proposed model with state-of-the-art models including five models with reconstruction techniques and two models with secondary decomposition techniques. The experiment results demonstrate the superiority of our proposed dynamic decomposition-reconstruction technique in terms of forecasting accuracy, precise direction, equality, stability, correlation, comprehensive accuracy, and statistical tests. To conclude, our proposed model has the potential to be a useful tool for short-term load forecasting.

Keywords: Short-term load forecasting; Time series modeling; Dynamic decomposition-reconstruction technique; Neural networks (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222024951
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024951

DOI: 10.1016/j.energy.2022.125609

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024951