Resilience analysis of a PV/battery system of health care centres in Rohingya refugee camp
Tamal Chowdhury,
Hemal Chowdhury,
Kazi Sifatul Islam,
Ayyoob Sharifi,
Richard Corkish and
Sadiq M. Sait
Energy, 2023, vol. 263, issue PA
Abstract:
Due to frequent natural disasters, it is required for the energy systems to be more resilient and affordable. Numerous investigations can be found in the publications that proposed renewable energy systems to deliver power to localities. Nevertheless, researchers have yet to explore the resiliency benefits of renewable energy systems in refugee camps. Therefore, in this study, we modelled the performance of a PV/battery system for hypothetical health care centres located in the Rohingya refugee camp, Bangladesh. A 24-h grid outage was assigned to the REopt software to observe the survival possibility of the system. An optimized mixed-integer linear programming model is used as it considers several practical parameters such as reducing total cost sufficiently robust to handle the simulated outages perfectly. The optimum system consists of a 643 kW PV and a 102 kW battery. The potential life cycle savings of the system are $27,212, and the system can successfully handle a 24-h duration outage. The system also reduces CO2 emissions by 69% in resilient mode compared to 44% in financial mode. Therefore, it can contribute to climate change mitigation.
Keywords: Rohingya; Bangladesh; Battery; REopt; Resiliency; Health care center (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222025208
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222025208
DOI: 10.1016/j.energy.2022.125634
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().