Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins
Chenyu Zhang,
Ning Wang,
Hongtao Xu,
Yuan Fang,
Qiguo Yang and
Fariborz Karimi Talkhoncheh
Energy, 2023, vol. 263, issue PA
Abstract:
Regulating photovoltaic (PV) cells temperature using phase change materials (PCMs) is considered a promising thermal management strategy. In this study, a solar PV-PCM collector with rectangular copper fins was proposed, and the effects of the PCM height and fin length, arrangement, and number, on the temperature characteristics, and electrical efficiency of PV cells were numerically investigated. A PCM height of 60 mm could meet the thermal management requirement of a heat flux input of 800 W/m2 during the daytime. Compared with the PV-PCM model without fins, the PV cell performance was improved by 4.62% for the model uniformly arranged three fins with a height of 33.33 mm. The variable length and nonuniform arrangement of fins could further enhance the performance of PV cells; however, the temperature uniformity deteriorated. Compared with fin length and arrangement, the fin number played a more significant role in the thermal management of PV cells. The model with eleven fins performed the best with the average temperature, temperature unevenness, and efficiency of 48.58 °C, 3.20, and 11.19%, respectively. These values were 16.11 °C and 43.06% lower, and 7.70% greater than the model without fins. This study provides valuable insight into the design optimization of PV-PCM systems.
Keywords: Thermal management; PV cell; Phase change material; Metal fin; Performance optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222025555
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222025555
DOI: 10.1016/j.energy.2022.125669
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().