Analysis of functionally graded metal foams for the accomplishment of heat transfer enhancement under partially filled condition in a heat exchanger
Prakash H. Jadhav,
N. Gnanasekaran and
Moghtada Mobedi
Energy, 2023, vol. 263, issue PA
Abstract:
The use of partially filled high porosity graded aluminum and copper foams is explored to satisfy both heat transfer and pressure drop in a heat exchanger. Both positive and negative orientations are accomplished for the enhancement of heat transfer with reduction in the pressure drop. The present research includes three different configurations M1, M2 and M3 (porous layer inner diameter = 0.06 m, 0.04 m, and 0.02 m, respectively, while outer diameter = 0.10 m) partially filled with positive (i.e., increasing, 20/45 PPI) negative (i.e., decreasing, 45/20 PPI) and compound (i.e., 45 Cu/20 Al PPI) graded porous layer thickness. Each configuration involves three different graded porous layer to present the optimum graded porous layer thickness. The thermo-hydrodynamic characteristics are apprehended by using Darcy Extended Forchheimer (DEF) flow and local thermal non-equilibrium (LTNE) models for the partially filled graded porous structure and k-ω turbulence model is accomplished in open passage flow of the conduit. The decreasing graded foam located inside the models M1 and M2 performed 1.68%–12.85% and 13.42%–23.32% higher heat transfer rate compared to without graded metal foam of models M2 and M3, respectively accompanied with 55.43%–84.02% and 35.69%–50.31% lesser pumping power.
Keywords: Internal flow; Forced convection; Graded metal foam; Compound graded metal foam; DEF; LTNE (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222025774
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222025774
DOI: 10.1016/j.energy.2022.125691
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().