EconPapers    
Economics at your fingertips  
 

Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates

Huawei Chang, Fengyang Cai, Xianxian Yu, Chen Duan, Siew Hwa Chan and Zhengkai Tu

Energy, 2023, vol. 263, issue PA

Abstract: Reliable thermal management ensures stable and efficient operation of proton exchange membrane (PEM) fuel cells. An air-cooled fuel cell stack with metal bipolar plates was developed, and 32 micro-thermocouples were arranged for in situ measurement of the temperature distribution. The resistance characteristic of the stack was tested in a wind tunnel, and then the effects of hydrogen pressure and airflow rate were analyzed. The results show that the highest and average temperatures in the stack exhibit a “parabolic” distribution as well as the maximum temperature difference of each single cell on the inlet side of the cathode. However, the temperature difference on the outlet side shows an “anti-parabolic” distribution. With a decrease in the airflow rate, the temperature uniformity in the stack deteriorates gradually. When the maximum pulse width modulation (PWM) duty cycle of the fans was 70% and the current density was 500 mA/cm2, the temperature difference between different single cells and inside a single cell can reach 19.7 °C and 8.4 °C, respectively. The temperature uniformity in the stack at high current densities could be effectively improved by increasing the airflow rate. In addition, the hydrogen pressure and airflow rate have a certain effect on the voltage consistency.

Keywords: PEM fuel Cell; Hydrogen; Open-cathode air-cooled stack; Thermal management; Temperature distribution; Ultra-thin metal bipolar plate (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422202610X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pa:s036054422202610x

DOI: 10.1016/j.energy.2022.125724

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s036054422202610x