Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation
Yi Sun,
Tang Qian,
Jingdong Zhu,
Nan Zheng,
Yu Han,
Gang Xiao,
Meng Ni and
Haoran Xu
Energy, 2023, vol. 263, issue PA
Abstract:
Reversible solid oxide cell (rSOC) can flexibly switch between the electrolysis mode and the fuel cell mode for electrical energy storage and power generation. For practical application, sweeping gas is needed to bring in the reactants and take out the products timely. In this study, we use steam as anode sweeping gas in electrolysis to decrease the overpotential loss and collect pure O2, which is then used as the fuel cell cathode oxidant. The real fluctuating power generated from solar photovoltaic is used as the power supply, which allows rSOC to generate H2 from 6:45 a.m. to 5:45 p.m. and produce electricity in the night. Compared with the conventional strategy, the proposed system can utilize more than 35% electricity in electrolysis, and its efficiency and total H2 production can be increased by 8% and 50%, respectively. The total power generation and the power density are also increased by 290% and 160%, respectively. Overall, this new strategy results in a doubled round-trip voltage efficiency due to the much-decreased overpotential losses in the electrochemical processes. This study provides a guidance for the optimization of practical rSOC application with dynamic operating conditions.
Keywords: Reversible solid oxide cell; Hydrogen production; Power generation; Efficiency; Numerical simulation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222026111
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222026111
DOI: 10.1016/j.energy.2022.125725
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().