MD-CFD simulation on the miscible displacement process of hydrocarbon gas flooding under deep reservoir conditions
Zechen Yan,
Xiaofang Li,
Xu Zhu,
Ping Wang,
Shifan Yu,
Haonan Li,
Kangxing Wei,
Yan Li and
Qingzhong Xue
Energy, 2023, vol. 263, issue PA
Abstract:
In this study, the microscopic miscible mechanism and the macroscopic flow characteristics of hydrocarbon gas and crude oil are investigated by combining molecular dynamic (MD) simulation and computational fluid dynamics (CFD) simulation. Under the deep reservoir conditions, the MD results manifest that compared with water flooding, hydrocarbon gas flooding could be more miscible with oil molecules, due to their stronger interactions. Based on the calculated density, viscosity and diffusion coefficient by the MD method, the CFD model is constructed to study the miscible displacement process of hydrocarbon gas flooding at 413 K and 50 MPa. The CFD results illustrate that the ability of oil displacement of different injection mediums follows the order of methane > ethane > propane > water. Because of the oil-gas miscibility, hydrocarbon gas could weaken the negative effect of the porosity and the wettability, leading to the decrease of the residual oil (RO) content. Moreover, the multi-component injection method is proposed for multi-scale porous media including nano-pore and micron-pore with small pore size. Notably, the variable velocity injection method is firstly designed for enhanced oil recovery. Compared with the constant low-velocity method, the RO content and the injection time of this method are effectively reduced by 12.4% and 66.7%, respectively.
Keywords: Hydrocarbon gas flooding; MD-CFD Simulation; Injection medium; Reservoir properties; Variable velocity injection method (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222026160
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222026160
DOI: 10.1016/j.energy.2022.125730
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().