EconPapers    
Economics at your fingertips  
 

Optimal energy performance of dynamic sliding and insulated shades for residential buildings

Moncef Krarti

Energy, 2023, vol. 263, issue PB

Abstract: The paper evaluates the potential energy efficiency benefits for dynamic sliding exterior shades suitable for windows of both new and existing buildings. In particular, the analysis outlined in the paper summarizes the energy performance of dynamic sliding shades when applied to windows for apartment units located in various US climates. A series of sensitivity analyses is performed using a detailed whole-building simulation coupled with modeling techniques of dynamic envelope systems to determine the optimal positions for the dynamic sliding shades to minimize the annual demand for US housing units. Several operation strategies are evaluated using continuous and stepped settings of the positions for the dynamic sliding shades using monthly, daily, and hourly adjustment frequencies. The results of the analyses indicate that the dynamic shades have significant energy efficiency potential for all US climates and design conditions with annual savings in HVAC energy end-use of over 50% especially in hot and mild climates. The performance of the dynamic shades is even higher for large and single-pane windows indicating that these systems can serve as retrofit alternatives to window replacements.

Keywords: Energy efficiency; Dynamic shades; Insulated shades; Residential buildings; Solar controls; Windows (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222025853
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222025853

DOI: 10.1016/j.energy.2022.125699

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222025853