Facilitating the implementation of neural network-based predictive control to optimize building heating operation
Marjan Savadkoohi,
Marcel Macarulla and
Miquel Casals
Energy, 2023, vol. 263, issue PB
Abstract:
Simple neural network (NN) architecture is a reliable tool to transform reactive rule-based systems into predictive systems. Thermal comfort is of utmost importance in office buildings, which need the activation of heating systems at an optimal time. A high-performance NN predictive system requires a large training dataset. This can limit system efficiency due to the lack of enough historical data derived from thermal controllers. To address this issue, we generated, trained and tested a dataset of eight sizes using a calibrated building model. A set of key performance indicators (KPIs) was improved by studying the output performance. The effect of normalization and standardization preprocessing techniques on NN prediction ability was studied. Learning curves showed that a minimum of 1–4 months of data are required to obtain enough accuracy. Two heating seasons provide the optimal data size to calibrate the NN properly with high prediction accuracy. The results also revealed that building data from ≥two years slightly improve NN performance. The most accurate results in KPIs (≥ 90%) were obtained with preprocessed data. The effect of preprocessing on large training patterns was less than that of training patterns <100. Finally, NN model performance was less accurate in cold climate zones.
Keywords: Neural network; Historical data; HVAC systems; Building energy optimization; Predictive control; Set-point (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222025890
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222025890
DOI: 10.1016/j.energy.2022.125703
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().