EconPapers    
Economics at your fingertips  
 

Deep convolutional neural network based closed-loop SOC estimation for lithium-ion batteries in hierarchical scenarios

Qiao Wang, Min Ye, Meng Wei, Gaoqi Lian and Yan Li

Energy, 2023, vol. 263, issue PB

Abstract: Battery type variation and sensor measurement noise in different scenarios decrease the accuracy and robustness of the state of charge (SOC) estimation. To develop a universal SOC estimator for different scenarios, this study proposes a closed-loop framework based on a deep convolutional neural network (DCNN). First, a two-dimensional CNN is proposed to extract the features of the input data based on the convolutional operation and average pooling to train a pre-trained model with a smaller model size, and the raw data are processed by a moving window. Then, transfer learning and pruning operations are employed to help the pre-trained model quickly adapt to hierarchical scenarios. Finally, to improve the robustness of SOC estimation under low-quality measurement, the DCNN is proposed to learn the relationship between the SOC and measurement equations of the Kalman filter to realise closed-loop estimation. Several experiments were carried out for validation, including battery tests of different types and aging states. The evaluation results show that root mean square errors (RMSEs) of less than 2.47% can be obtained by fine-tuning the parameters of the last few layers. We demonstrated the robustness of the proposed method in three hierarchical scenarios; it maintained RMSEs of less than 1.78% under severe disturbances.

Keywords: State of charge; Hierarchical scenarios; Deep convolutional neural network; Transfer learning; Pruning operation; Closed-loop estimation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222026044
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026044

DOI: 10.1016/j.energy.2022.125718

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026044