EconPapers    
Economics at your fingertips  
 

Low-carbon robust economic dispatch of park-level integrated energy system considering price-based demand response and vehicle-to-grid

Xiangmei Lyu, Tianqi Liu, Xuan Liu, Chuan He, Lu Nan and Hong Zeng

Energy, 2023, vol. 263, issue PB

Abstract: With the aggravation of energy crisis and greenhouse effect, energy transformation is imperative. The problems of renewable energy uncertainties and carbon emission need to be solved urgently. Therefore, to deal with uncertainties and cut down carbon emission in the park-level integrated energy system (IES), this paper proposes a low-carbon robust economic dispatch model considering price-based integrated thermo-electric demand response (DR) and vehicle-to-grid (V2G). Firstly, The V2G model, price-based integrated thermo-electric DR model and carbon trading model are established. Then, considering energy balance constraints of power/natural gas/heat, operation constraints and energy exchange constraints, a deterministic day-ahead scheduling model for low-carbon operation is presented with the goal of maximizing system social welfare. Finally, considering the uncertainties of wind/solar generation and electricity/heat load, a two-stage robust economic dispatch model is proposed. Case studies verify that the deterministic scheduling model could effectively increase system flexibility, while reducing the total production cost by 18.58% and carbon emission by 16.77%. Furthermore, the proposed robust scheduling model sacrifices 12.65% economy to maintain system security against various uncertainties and maintain carbon emission in the worst-case scenario with an acceptable range.

Keywords: Park-level integrated energy system; Uncertainty; V2G; Price-based integrated thermo-electric demand response; Carbon trading; Robust optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222026251
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026251

DOI: 10.1016/j.energy.2022.125739

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026251