Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine
Hao Meng,
Changwei Ji,
Jianpu Shen,
Jinxin Yang,
Gu Xin,
Ke Chang and
Shuofeng Wang
Energy, 2023, vol. 263, issue PB
Abstract:
Hydrogen-fueled Wankel rotary engine (HWRE), as a high power density and eco-friendly internal combustion engine, has the potential to become an alternative for gasoline-fueled piston engines. Cooled EGR, as an effective means of improving engine performance, is less studied based on HWRE. However, due to the different operating way and structure, the flame development and propagation of WRE are significantly different from those of the piston engine, so may the effect of cooled EGR. Hence, the goal of present work is to analyze the effect of cooled EGR on the combustion characteristics of HWRE. This work is conducted under 1500 r/min and wide-open throttle conditions. The results show that when the ignition timing and excess air ratio are fixed at 5°CA ATDC and 1, the cooled EGR level has a significant influence on the combustion process and operating stability. In addition, when maximum brake torque CA50 is employed, within test range, whether stoichiometric or lean combustion, both the brake torque and brake thermal efficiency are monotonous to the cooled EGR level. And cooled EGR can achieve high brake thermal efficiency compared with lean combustion at the same brake torque. Compared with the hydrogen-fueled piston engine, HWRE allows for a higher cooled EGR level whether in terms of efficiency or power output considerations. In general, the cooled EGR can be used as an excellent load control means to achieve high efficiency of HWRE.
Keywords: Hydrogen-fueled Wankel rotary engine; Cooled-EGR; Combustion characteristic (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222027013
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222027013
DOI: 10.1016/j.energy.2022.125815
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().