Insight into the chemical reaction process of coal during the spontaneous combustion latency
Hao Liu,
Zenghua Li,
Guodong Miao,
Jingjing Yang,
Xiangqiang Wu and
Jiahui Li
Energy, 2023, vol. 263, issue PB
Abstract:
The oxidation reaction intensity of coal is quite weak during the spontaneous combustion latency. A thermopile sensor suitable for an isothermal flow reactor was developed to monitor the temperature of coal during the spontaneous combustion latency. The role of oxidation temperature and particle size were discussed. The element and oxygen-containing functional group changes of coal samples after oxidation were measured by X-ray photoelectron spectroscopy (XPS). The results show that the coal temperature has remarkable laws which conforms to a quadratic polynomial T = T0+A t-B t2+C t3-D t4. In the temperature range 20–70 °C, a temperature dependence of reaction rate which does not conform to the Arrhenius equation. The laws accord with a third order polynomial function ln(Dt/dt) = A(1/T)3+B(1/T)2+C(1/T)+D. The decrease of particle size can effectively increase the oxidation heat released by coal during the spontaneous combustion latency. Singly bonded C–O groups, phenol, alcohol or ether, dominate at all temperatures over other oxygen-containing functional groups. The contents of C–O groups and hydroperoxide continue to increase during the spontaneous combustion latency. The results will be helpful to further reveal the oxidation mechanism of coal during the spontaneous combustion latency.
Keywords: Coal spontaneous combustion; The spontaneous combustion latency; Coal temperature; XPS; Oxidation mechanism (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222027098
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222027098
DOI: 10.1016/j.energy.2022.125823
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().