EconPapers    
Economics at your fingertips  
 

An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range

Bo Jiang, Yuli Zhu, Jiangong Zhu, Xuezhe Wei and Haifeng Dai

Energy, 2023, vol. 263, issue PC

Abstract: Capacity estimation is essential for battery health management during the whole lifecycle. The data-driven technique has shown advanced performance in battery capacity estimation. However, the strict limitations on application scenarios and the long duration for feature determination are still the bottlenecks of existing data-driven estimation methods. This study proposes a data-driven capacity estimation method only using 10-min relaxation voltage data, which is adaptable to the high state of charge (SOC) range. The experiments of commercial batteries are designed to investigate the coupling relationship between relaxation voltage, battery aging, and charging cut-off SOC. Further, a novel dual Gaussian process regression (GPR) framework is put forward, in which one GPR is responsible for the battery open-circuit voltage (OCV) estimation using the sequential relaxation voltage feature, and another GPR estimates battery capacity with the corresponding relaxation voltage feature and the estimated OCV. Quantitative experimental results demonstrate that the proposed approach can achieve accurate OCV estimation with extremely sparse voltage data. When SOC is larger than 90%, the capacity estimation achieves a mean absolute error of 2.493% over the battery lifecycle, showing a noticeable improvement over the traditional estimation method.

Keywords: Lithium-ion battery; Capacity estimation; Relaxation voltage; Data-driven; State of charge (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222026883
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222026883

DOI: 10.1016/j.energy.2022.125802

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222026883