Gas utilization optimization and exergy analysis of hydrogen metallurgical shaft furnace
Ziyang Qiu,
Qiang Yue,
Tianyi Yan,
Qi Wang,
Jingchao Sun,
Yuxing Yuan,
Zichang Che,
Yisong Wang and
Tao Du
Energy, 2023, vol. 263, issue PC
Abstract:
For the objective of carbon neutrality stated by the global climate conference, the iron and steel industry, a major carbon emitter, must transition to green and low-carbon development as quickly as feasible. Hydrogen metallurgy direct reduction technology has attracted much attention because of its low emission. However, the current study on hydrogen metallurgy shaft furnace lacks a comprehensive in-depth analysis of gas consumption, gas utilization, and exergy intensity. To tackle these problems, a material and energy optimization model including intermolecular chemical reaction is established. The original process is optimized by this model, the gas utilization is enhanced by 26.7%, gas consumption is decreased by 906.34 m3/t-DRI, and exergy intensity is reduced by 8.8 GJ/t-DRI. Furthermore, the impacts of gas composition, gas temperature, and ore temperature on gas consumption, gas utilization, exergy structure, and exergy intensity, as well as their interactions, are investigated thoroughly. The analysis highlighted that properly reducing hydrogen content and increasing gas and ore temperature can improve gas utilization and reduce gas consumption. Simultaneously, lowering gas consumption can effectively lower exergy intensity. And furnace top gas exergy is closely related to gas utilization. On the whole, it is advantageous to promote the development of hydrogen metallurgy by conducting in-depth and systematic analyses.
Keywords: Hydrogen metallurgical; Gas-based shaft furnace; Gas utilization; Nonlinear programming; Exergy structure and intensity (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222027335
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027335
DOI: 10.1016/j.energy.2022.125847
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().