EconPapers    
Economics at your fingertips  
 

An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events

Yang Cui, Zhenghong Chen, Yingjie He, Xiong Xiong and Fen Li

Energy, 2023, vol. 263, issue PC

Abstract: Reliable wind power and ramp event prediction is essential for the safe and stable operation of electric power systems. Previous prediction methods struggled to forecast large fluctuations in wind power caused by extreme weather conditions, severely limiting the development of wind power prediction techniques. Based on this problem, an improved hybrid model is presented in this study, that utilises long short-term memory (LSTM) by considering wind power ramp events (WPREs). First, the LSTM network was driven by numerical weather prediction (NWP) to forecast day-ahead wind power. Second, a novel improved dynamic swinging door algorithm (ImDSDA) and a fuzzy C-means (FCM) model were utilised for WPRE detection and classification respectively. Third, a similarity-matching mechanism was proposed to correct the predicted WPREs. Finally, the predicted wind power was reconstructed using the optimised WPREs.The model, which was validated in three mountainous wind farms in central China, can capture the temporal dynamics of wind power using deep learning and WPRE prediction. The proposed model's results outperformed a few existing methods and can provide scientific guidance for the safe dispatching and economic operation of power systems.

Keywords: Deep learning; Wind power forecast; Wind power ramp event; Numerical weather prediction; LSTM; Day-ahead (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222027748
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027748

DOI: 10.1016/j.energy.2022.125888

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027748