AI-assisted maldistribution minimization of membrane-based heat/mass exchangers for compact absorption cooling
Zengguang Sui and
Wei Wu
Energy, 2023, vol. 263, issue PC
Abstract:
Flow maldistribution has been a major challenge for heat/mass exchangers, which is a particular concern in compact membrane-based absorbers used in absorption refrigeration systems driven by renewable/waste energy. Herein, we construct an artificial intelligence (AI) tool coupling a 3D CFD model, a discrete model, and an optimization algorithm for the development of highly efficient and compact plate-and-frame membrane-based absorbers (PFMAs). In the AI-assisted tool, CFD simulations demonstrate that the PFMA suffers from more severe flow maldistribution as the number of channels increases. The average absorption rate is decreased by 21.44% as the number of channels increases from 5 to 21. The heat and mass transfer performance of the 5-channel and 21-channel models is reduced by 3% and 22%, respectively. Meanwhile, a simple and universal discrete model is developed and validated to predict the flow distribution in PFMAs, with a maximum deviation of 10.18%. To minimize the flow maldistribution, an optimization structure with a uniform distributed flow field is determined by developing and coupling a rapid optimization algorithm. After optimization, a reduction of about 10 times in the flow maldistribution can be achieved, and the heat and mass transfer performance deterioration caused by the flow maldistribution can be minimized to about 1%.
Keywords: Renewable/waste energy; Membrane-based absorbers; AI-Assisted tool; Flow maldistribution; Discrete model; Heat and mass transfer performance (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222028080
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222028080
DOI: 10.1016/j.energy.2022.125922
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().