EconPapers    
Economics at your fingertips  
 

A gas-thermal inertia-based frequency response strategy considering the suppression of a second frequency dip in an integrated energy system

Cairan Miao, Qi Wang and Yi Tang

Energy, 2023, vol. 263, issue PD

Abstract: Increasing access to intermittent new energy in the power grid reduces system inertia and exposes the power system to severe frequency stability problems. To address this issue, this study fully exploits the slow-dynamic characteristics in gas-thermal systems of the integrated energy system to provide frequency response. Given the characteristics of both being able to provide buffer space for energy fluctuations, this study gives definitions of gas-thermal inertia and explores their similar power shortage support potential. Then given the necessity of thermal recovery on the load side, a gas-thermal inertia-based frequency response strategy is proposed with help of gas inertia to suppress the second frequency dip. The frequency response model presented in the paper also offers an opportunity to weigh the frequency response effect against the total economic benefit. The proposed strategy is tested in an actual scenario, and the effectiveness of second frequency dip suppression is tested.

Keywords: Frequency response; Second frequency dip; Gas-thermal inertia; Integrated energy system (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222027669
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222027669

DOI: 10.1016/j.energy.2022.125880

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222027669