A pressure-node based dynamic model for simulation and control of aircraft air-conditioning systems
Haoran Sun,
Zhongdi Duan,
Xuyang Wang,
Dawei Wang and
Chengyun Wu
Energy, 2023, vol. 263, issue PD
Abstract:
The aircraft air-conditioning system, which consumes the engine bleed air to provide stable and comfort environment for passengers, has a high demand of system reliability and energy efficiency. For analyzing system performance and control effect under a wide range of operating scenarios, this paper presents a dynamic model of the aircraft air-conditioning system. A pressure-node based method is proposed to decouple the system architecture, and a modelling framework is established with reflecting the interdependencies between component-level modules. Dynamic sub-models including pressure nodes, heat exchangers and the air cycle machine are built to predict all major dynamics in the system. The model is verified by the measured data of an airborne testing. The predicted temperatures show good agreement with the measured data, of which the average deviations at the compressor outlet and system outlet are 4.60 °C and 3.49 °C, respectively. The effectivity of the proposed model is investigated under various conditions, including different control signal inputs, standard pull up/pull down conditions and an entire flight case. The simulation results indicate that the model can be successfully applied for a wide range of aircraft operating scenarios, and provide insight towards control design and fault detection of the aircraft air-conditioning system.
Keywords: Aircraft; Air-cycle refrigeration system; Air cycle machine; Dynamic modelling; Heat exchanger (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222027967
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222027967
DOI: 10.1016/j.energy.2022.125910
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().