Dynamic performance for discharging process of pumped thermal electricity storage with reversible Brayton cycle
He Yang,
Jinduo Li,
Zhihua Ge,
Lijun Yang and
Xiaoze Du
Energy, 2023, vol. 263, issue PD
Abstract:
Pumped thermal electricity storage (PTES) is suitable for large-scale energy storage applications because of its low cost and no geographical constraints. In this study, the performance of PTES system for adjusting the net power output of the heat engine cycle to meet the load demand variation, is investigated. Based on the off-design condition models of turbomachinery and heat exchangers, the heat engine cycle dynamic model of a 5 MW PTES system is established. The disturbance simulation of the user-side load is carried out, and the dynamic response results are obtained. The inventory control strategy of working fluid is proposed to control the net power output to follow the variations of the load demand. The traditional PI controller is used in the two control processes of 50% ramp-down in load demand and a typical day load demand in Zhangbei District of north China. The results indicate that the net power output of the heat engine cycle can follow the variation of load demand in time. With the inventory control strategy, the heat engine cycle mode of PTES system can adjust the net power output to meet changes in load demand.
Keywords: Pumped thermal electricity storage; Reversible Brayton cycle; Heat engine cycle; Dynamic response; Control strategy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422202816X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pd:s036054422202816x
DOI: 10.1016/j.energy.2022.125930
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().