Harvesting weak vibration energy by amplified inertial force and super-harmonic vibration
Qi Liu,
Weiyang Qin,
Tao Yang,
Wangzheng Deng and
Zhiyong Zhou
Energy, 2023, vol. 263, issue PD
Abstract:
To harvest vibration energy from a low-frequency and weak excitation, a rigid-elastic bi-stable harvester is proposed. This harvester is composed of an inertial mass, two linkages and two PZT beams. Under external excitation, the inertial force generated by the rigid mass can be amplified through the linkages and applied to the PZT beam, making it take a large deflection and even jump between the potential wells. To tailor the potential energy to an optimal one, the moving and fixed magnets are introduced. The repulsive force between them could elevate the bottom of potential wells and thus decrease the potential barrier, then the harvester could execute snap-through motion more easily. Furthermore, the harvester possesses a superharmonic characteristic. Under a low-frequency base excitation, the PZT beam can execute a super-harmonic vibration, this will increase the change times of stress of PZT material, thereby increasing the output power. The experiment results prove that the harvester could execute super-harmonic vibrations and snap-through motions under weak stochastic excitations. The large output could keep under weak excitations. At PSD = 0.01 g2/Hz, the average output power can reach 0.016 mW.
Keywords: Rigid-elastic bi-stable energy harvester; Amplified inertial force; Super-harmonic vibration; PZT beams; Magnetic force (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222028341
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028341
DOI: 10.1016/j.energy.2022.125948
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().