EconPapers    
Economics at your fingertips  
 

A knowledge-enhanced graph-based temporal-spatial network for natural gas consumption prediction

Jian Du, Jianqin Zheng, Yongtu Liang, Bohong Wang, Jiří Jaromír Klemeš, Xinyi Lu, Renfu Tu, Qi Liao, Ning Xu and Yuheng Xia

Energy, 2023, vol. 263, issue PD

Abstract: The accurate prediction of natural gas consumption plays a central role in long-distance pipeline system production and transportation planning, and it becomes even more important during present political situation. The existing prediction methods for natural gas consumption barely consider spatial correlations and domain knowledge. As a result, the study proposes a novel deep learning prediction method (knowledge-enhanced graph-based temporal-spatial network, abbreviated to KE-GB-TSN) for predicting natural gas consumption by integrating domain knowledge into association graph construction and capturing temporal-spatial features via a hybrid deep learning network. This study first applies the domain knowledge that analyses the operation technique of the natural gas pipeline network and combines the historical data to establish an association graph. Subsequently, the historical data and association graphs are input to a hybrid deep learning network to predict natural gas consumption. The comparative experiments are conducted by taking real-world cases of natural gas consumption as examples. At last, a sensitivity analysis of different components combination is carried out to exhibit the significance of each component in the proposed model. The results prove that the proposed model is capable of achieving more accurate and efficient predicted results compared to the advanced models, such as decision trees and gated recurrent units. The Mean Absolute Relative Errors and Root Mean Squared Relative Errors gotten by the proposed model are less than 0.11 and 0.14 in all cases, indicating an improvement compared to previous works. Additionally, it is also suggested that domain knowledge and temporal-spatial correlations are crucial for the excellent performance of the prediction model.

Keywords: Natural gas consumption; Daily prediction; Domain knowledge; Temporal-spatial correlations; Deep learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222028626
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028626

DOI: 10.1016/j.energy.2022.125976

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028626