EconPapers    
Economics at your fingertips  
 

Parametric study of cavity on the performance of a hydrogen-fueled micro planar combustor for thermophotovoltaic applications

Wei Zuo, Dexin Li, Jiaqiang E, Yongfang Xia, Qingqing Li, Yifan Quan and Guangde Zhang

Energy, 2023, vol. 263, issue PD

Abstract: In order to obtain high energy output power and energy conversion efficiency for micro-thermophotovoltaic system, a hydrogen-fueled micro planar combustor with cavity is designed in this work. Numerical investigations on the performance of micro-cylindrical combustors with and without cavity are executed under different cavity length, outlet size and solid wall materials. Results show that the micro planar combustor with cavity can obtain a higher and more uniform outer wall temperature comparing with the micro planar combustor without cavity. With the reduction of cavity length and outlet size, the energy output and energy conversion efficiency of MTPV is much higher, while the pressure loss becomes larger. Thus, the optimal dimensionless cavity length and outlet size is 3/9 and 5/7 × 1/3, respectively. Furthermore, with the optimal cavity length and outlet size, nickel is used as the solid wall material for higher energy conversion efficiency of MTPV system, which increases to 3.86% at the inlet velocity of 5 m/s. As a result, the micro planar combustor with cavity is more suitable in MTPV system for higher energy output and energy conversion efficiency.

Keywords: Micro planar combustor; Hydrogen-fueled; Cavity; Thermophotovoltaic applications (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222029140
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222029140

DOI: 10.1016/j.energy.2022.126028

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222029140