Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse
Honggang Li,
Dian Zhou,
Meihe Zhang,
Binghe Liu and
Chao Zhang
Energy, 2023, vol. 263, issue PE
Abstract:
Mechanical abuse-induced hazardous of lithium-ion batteries (LIBs), in which internal short circuits, thermal runaway, and mechanical failure can coincide and interact with each other, has become a critical issue that hinders the further application of LIBs. This study clarifies the bridging process from short circuit to thermal runaway for LIBs in complex mechanical abuse environment using a three-dimensional two-way coupled mechanical–electrochemical–thermal model. The developed model is verified by the two most common engineering scenarios including mechanical crushing and nail penetration. The complex structural damage–induced internal short circuit and thermal runaway behavior of LIBs are discussed. Moreover, the triggering mechanisms from internal short circuit to thermal runaway and the detailed exothermic reaction are revealed through model predictions. In particular, this study constructed a visual analysis framework of the coupled mechanical-electrochemical-thermal failure process for LIBs subjected to mechanical abuse. A model-based discussion of uneven lithium ions diffusion phenomenon is presented to interpret the electrochemical behavior of the battery caused by internal short circuit. The research results and the developed modeling method provide a robust tool for the mechanical abuse-safe design and evaluation of LIBs from a multi-disciplinary perspective.
Keywords: Lithium-ion batteries; Mechanical abuse; Internal short circuit; Thermal runaway; Multi-field coupling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222029139
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029139
DOI: 10.1016/j.energy.2022.126027
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().