EconPapers    
Economics at your fingertips  
 

Characteristics and cleaning methods of dust deposition on solar photovoltaic modules-A review

Beihua He, Hao Lu, Chuanxiao Zheng and Yanlin Wang

Energy, 2023, vol. 263, issue PE

Abstract: Carbon neutrality has become a global consensus for green development, and solar photovoltaic power generation has increasingly become one of the key technologies for carbon reduction. Large-scale photovoltaic power plants are often built in arid and sandy areas, which carry a large number of dust particles in the air. Dust deposition on photovoltaic modules has a significant impact on the transmittance, temperature, and roughness of photovoltaic modules, reducing their power generation efficiency and service life. The paper has the following structure: i) relevant research all over the world; ii) the mechanism of dust deposition and the influencing factors on photovoltaic modules; and, iii) some current methods of cleaning are summarized, and the mechanism of self-cleaning coatings for dust deposition prevention. It is found that the process of dust deposition is accomplished dynamically and repeatedly under the joint action of several forces. And the diameter of the particle, the installation angle of photovoltaic modules and wind speed have a great influence on the behavior of dust deposition. Self-cleaning coatings have an obvious effect on the prevention of dust deposition. The paper also looks forward to future research methods of particle deposition and cleaning on photovoltaic modules.

Keywords: Photovoltaic power generation; Dust deposition; Influencing factors; Methods of cleaning; Self-cleaning coatings (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222029693
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029693

DOI: 10.1016/j.energy.2022.126083

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029693