EconPapers    
Economics at your fingertips  
 

Battery thermal management system with heat pipe considering battery aging effect

Zengjia Guo, Qidong Xu, Yang Wang, Tianshou Zhao and Meng Ni

Energy, 2023, vol. 263, issue PE

Abstract: Battery aging in electric vehicles affects both thermal characteristics and electrochemical performance of batteries. In this paper, a more realistic and generic model combining electrochemical reactions, capacity decay and heat transfer is developed for the design of battery thermal management system (BTMS) to ensure efficient and durable operation of batteries. Multiphysics behaviors of the battery pack with heat pipe-BTMS (HP-BTMS) and micro heat pipe-BTMS (MHP-BTMS) under different working cycles are analyzed and compared. It is found that HP-BTMS and MHP-BTMS can provide good thermal management for batteries for several working cycles only. Both HP-BTMS and MHP-BTMS fail to provide effective cooling to the batteries after 1250 cycles, due to the higher heat generation of the aged battery due to solid electrolyte interphase (SEI) formation. As MHP-BTMS always shows a better cooling performance than that of HP-BTMS, optimizations are made for MHP-BTMS in terms of the heat transfer performance. The results show that MHP-BTMS with X direction MHP, non-equidistant arrangements and cold plates can effectively control the battery temperature even after 1250 cycles and prevent the SEI formation and capacity decay.

Keywords: Lithium-ion battery; Capacity fade; Thermal management system; Heat pipe; Multiphysics modeling; Electrochemical characteristic (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422203002X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pe:s036054422203002x

DOI: 10.1016/j.energy.2022.126116

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s036054422203002x