Performance analysis of a dish solar thermal power system with lunar regolith heat storage for continuous energy supply of lunar base
Xueling Li,
Renfu Li,
Lin Hu,
Shengjie Zhu,
Yuanyuan Zhang,
Xinguang Cui and
Yichao Li
Energy, 2023, vol. 263, issue PE
Abstract:
Sustainable energy supply is a major challenge for the lunar base because of the lengthy night of the Moon. In-situ resource utilization based on lunar regolith heat storage is a promising solution to this challenge. Herein, a dish solar thermal power system with lunar regolith heat storage is proposed to supply energy to a lunar base. A theoretical model is established using finite-time thermodynamics to investigate system performance in a lunar circadian cycle. A case study shows that the output power and efficiency of the system gradually decrease whether in lunar day or lunar night. The average output power during the lunar day and night is 10.8 kW and 7.0 kW, respectively. The system can achieve a high energy efficiency of 48.0%, which is mainly owing to the full utilization of lunar resources. In addition, the effects of several key parameters on the system performance are discussed and the results show that the energy supply of the system requires a tradeoff between lunar day and night. This work reveals that the proposed system has the potential to supply energy to the lunar base continuously and efficiently, providing a scheme for the energy supply system of the future lunar base.
Keywords: Lunar base; Solar thermal power; Lunar regolith heat storage; Stirling cycle; Finite-time thermodynamics (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222030250
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222030250
DOI: 10.1016/j.energy.2022.126139
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().