EconPapers    
Economics at your fingertips  
 

A hybrid day-ahead electricity price forecasting framework based on time series

Xiaoping Xiong and Guohua Qing

Energy, 2023, vol. 264, issue C

Abstract: Electricity price forecasting (EPF) plays an indispensable role in the decision-making processes of electricity market participants. However, the complexity of electricity markets has made EPF increasingly difficult. Currently, popular methods for EPF are based on signal decomposition and suffer from computational redundancy and hyperparameter optimization challenges. In this paper, we propose a new hybrid forecasting framework to improve the forecasting accuracy of day-ahead electricity prices. The proposed model consists of three valuable strategies. First, an adaptive copula-based feature selection (ACBFS) algorithm based on the maximum correlation minimum redundancy criterion is proposed for selecting model input features. Second, a new method of signal decomposition technique for EPF field is proposed based on decomposition denoising strategy. Third, a Bayesian optimization and hyperband (BOHB) optimized long short-term memory (LSTM) model is used to improve the effect of hyperparameter settings on the prediction results. The effectiveness of the different techniques was broadly cross-validated using five datasets set up for the PJM electricity market, and the results indicated that the proposed hybrid algorithm is more effective and practical for day-ahead EPF.

Keywords: Electricity price forecasting; Copula entropy; Feature selection; Variational mode decomposition; Optimization algorithm; Long short-term memory (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222029851
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:264:y:2023:i:c:s0360544222029851

DOI: 10.1016/j.energy.2022.126099

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222029851