A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer
Dongxue Zhang,
Shuai Wang,
Yuqiu Liang and
Zhiyuan Du
Energy, 2023, vol. 264, issue C
Abstract:
As the transitions of the power industry to decarburization and distributed energy systems, the future uncertainty information of electric load is becoming essential in power systems planning and operation. However, a great number of studies focus on point forecasting, which only provides the expected value at each time step and it cannot provide uncertainty information. This paper proposed a novel probabilistic load forecasting model by combining quantile regression (QR) with a hybrid model to improve smart grid reliability. In addition, to further improve accuracy and solve the problem that the optimal model is not unique, we propose a new combined probabilistic forecasting model (CPFM). The CPFM employs the traditional statistical models and QR-machine learning models as alternative models; several alternative models with the best performance are combined through the improved multi-objective optimizer to obtain the final forecasting results. The ISO New England data is modeled as a case study to verify the effectiveness of the proposed CPFM. The comparative study includes 13 models, and the results show that the proposed CPFM has better performance in reliability, resolution, and sharpness.
Keywords: Probabilistic forecasting; Multi-objective optimization algorithm; Quantile regression; Deep learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222030584
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030584
DOI: 10.1016/j.energy.2022.126172
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().