Energy-efficient heating control for nearly zero energy residential buildings with deep reinforcement learning
Haosen Qin,
Zhen Yu,
Tailu Li,
Xueliang Liu and
Li Li
Energy, 2023, vol. 264, issue C
Abstract:
Controlling Heating, Ventilation and Air Conditioning (HVAC) systems is critical to improving energy efficiency of demand-side. In this paper, a model-free optimal control method based on deep reinforcement learning is proposed to control the heat pump start/stop and room temperature setting in residential buildings. The optimization goal of this method is to obtain the highest comprehensive reward which considering thermal comfort and energy cost. Firstly, the randomness, learning process, thermal comfort and energy consumption of the model-free controller are systematically investigated by a simulation system based on measured data. The results show that randomness has a significant impact on the initial performance and convergence speed of the model-free controller; The model-free controller has a linear accumulation of comprehensive rewards during the learning process, and the slope of the accumulated comprehensive rewards can be used to determine whether the controller converges; The model-free controller coordinates monitoring data, weather forecasts and building thermal inertia to achieve the highest comprehensive reward. Afterwards, the model-free controller was verified in a nearly zero energy residential building in Beijing, China. The results show that model-free controller improves the comprehensive reward by 15.3% compared to rule-based method.
Keywords: HVAC; Optimal control; Reinforcement learning; Deep Q learning; Prioritized replay; Model-free control (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422203095X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:264:y:2023:i:c:s036054422203095x
DOI: 10.1016/j.energy.2022.126209
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().