Numerical study on supercritical water partial oxidation of ethanol with auto-thermal operation
Lijing Bei,
Zhiwei Ge,
Changyifan Ren,
Di Su,
Fei Shang,
Yu Wang and
Liejin Guo
Energy, 2023, vol. 264, issue C
Abstract:
Supercritical water partial oxidation (SCWPO) is a low-carbon, non-polluting organics processing technology with great potential for development. This technology could convert ethanol into hydrogen and energy efficiently. However, conventional SCWPO reactors rely on external heating and thus have the disadvantages of harsh wall material requirements and low system efficiency. There is a lack of research on SCWPO reactors with auto-thermal operation. A numerical study on SCWPO of ethanol with auto-thermal operation under the adiabatic wall condition was conducted. The results of the SCWPO on ethanol were analyzed and compared for different parameters. It was found that the internal field distribution of the reactor for the adiabatic wall condition was significantly different from the thermostatic wall condition. Increasing the ethanol concentration reduced the equivalent ratio of oxidant (ER) required for the reactor to reach the auto-thermal state. Both higher preheated water temperature and longer reactor length could enhance the effect of the SCWPO of ethanol. When the reactor length was 4 m and the preheat water temperature was 600 °C, carbon gasification efficiency (CE) could reach 99.0%. This numerical study could serve for reactor scale-up and system optimization of SCWPO with auto-thermal operation.
Keywords: Supercritical water; Ethanol; Partial oxidation; Hydrogen (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222031838
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:264:y:2023:i:c:s0360544222031838
DOI: 10.1016/j.energy.2022.126297
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().