Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality
Yejin Hong,
Sungmin Yoon and
Sebin Choi
Energy, 2023, vol. 265, issue C
Abstract:
Buildings are considered the enormous source of untapped energy efficiency potential in the global carbon neutrality. It is necessary to ensure that buildings are energy-efficient using operational pattern analytics and diagnostics. Therefore, this study proposes a novel symbolic hierarchical clustering method (named HOS-SAX) to evaluate the building system operation, efficiency, and energy usage patterns. The proposed HOS-SAX method is intended to enhance the existing methods that focus only on the energy usage characteristics and thus offer limited insights on the building system and operational efficiency. The proposed method consists of: (1) Holistic Operational Signature (HOS) and (2) HOS-based symbolic aggregate approximation (SAX) analyses. A HOS analysis is conducted to derive the representative operational signatures for building operation and efficiency using system-, building-, and weather-level data. Then, SAX is performed with the operational signatures derived from the HOS to cluster the building operation patterns. In a case study for a district heating substation serving residential buildings, the HOS-SAX cluster analysis showed 15 sections in the cluster map that visualize the: (1) energy usage, (2) design efficiency, and (3) control efficiency. The cluster map revealed that the sections that operated inefficiently account for approximately 71% of the entire operation period. Moreover, it is expected that the supply temperature of 0.87 °C can be reduced in the most inefficient sections.
Keywords: Energy signature; Holistic operational signature; Symbolic aggregate approximation (SAX); Building data mining; Building energy efficiency; District heating (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222031620
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:265:y:2023:i:c:s0360544222031620
DOI: 10.1016/j.energy.2022.126276
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().