Portfolio optimization in district heating: Merit order or mixed integer linear programming?
Miguel Gonzalez-Salazar,
Julia Klossek,
Pascal Dubucq and
Thomas Punde
Energy, 2023, vol. 265, issue C
Abstract:
Long-term portfolio optimization is commonly used to find the most cost-effective design and operation of a district heating system, subject to technical, financial, and environmental restrictions. Optimizing a district heating system is not trivial and demands high accuracy and high computational speed. However, existing methods addressing this problem offer one or the other but not both at the same time. The state-of-the-art method for portfolio optimization is mixed integer linear programming (MILP), which is extensively used in industry and academia but can be computing and resource-intensive for large portfolio models. This limitation has motivated the development of various options to reduce the computation time while maintaining the accuracy to a large extent. An alternative method to MILP is the merit order (MO) method, which has been used especially for power generation applications due to its simplicity and faster computation but somewhat reduced accuracy. The aim of this paper is to investigate the potential advantages and disadvantages of MO models compared to MILP models in the context of optimizing the portfolio of assets supplying a district heating network. As a study case, we analyze a large portion of the district heating network in Berlin. Four MO model variants with different levels of complexity are proposed and compared to a reference MILP model. Results suggest that MO models variants including heat storage and describing CHP plants with significant detail have the potential to reduce calculation time by nearly three orders of magnitude compared to the reference MILP model, without significantly sacrificing accuracy. In fact, differences in heat generation and net present value (NPV) between the most accurate MO model and the reference MILP model account for ±4% and −6%, respectively. Moreover, results show that combining MO and MILP models is advantageous and offers high computational speed and at the same time high accuracy, especially when a large number of runs might be necessary. MO models could thus be used prior to MILP models to perform a pre-evaluation, an exploration of sensitivities, or for downsizing the initial optimization problem. Combining MO and MILP models could result in faster and more robust decision-making, which could otherwise not be attained with any of the two options individually.
Keywords: District heating; Portfolio optimization; Mixed integer linear programming; Marginal costs; Merit order (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222031632
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:265:y:2023:i:c:s0360544222031632
DOI: 10.1016/j.energy.2022.126277
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().