A novel prediction model for wind power based on improved long short-term memory neural network
Jianing Wang,
Hongqiu Zhu,
Yingjie Zhang,
Fei Cheng and
Can Zhou
Energy, 2023, vol. 265, issue C
Abstract:
Wind power generation technology has attracted worldwide attention. However, its inherent nonlinearity and uncertainty make itself hard to be accurately predicted. As a result, exploring the ways to remedy these defects become the key to the stable operation of power grid. This paper proposed a wind power prediction model based on the improved Long Short-Term Memory (LSTM) network to fit the nonlinearity between data variables and wind power. The chaotic sequence and Gaussian mutation strategy are introduced into the original sparrow algorithm, so as to improve its stability and search performance. Then, the modified sparrow algorithm is implemented to adjust the LSTM network's hyperparameters like batch size, cell number and learning rate; and therefore the prediction accuracy is increased. After that, the improved model is applied to the data sets of a wind farm in Hunan province during the four seasons of 2020. And then it is compared with other four combined models. The experimental results show that, the RMSE of the proposed prediction method is reduced respectively by 37.37%, 13.44%, 10.64% and 20.78% in four seasons. It is proved that the proposed method improves the accuracy for wind power prediction and the effectiveness for power dispatching.
Keywords: Wind power prediction; Long short-term memory neural network; Improved sparrow algorithm; Gaussian mutation strategy; Tent chaotic sequence (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222031693
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:265:y:2023:i:c:s0360544222031693
DOI: 10.1016/j.energy.2022.126283
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().