EconPapers    
Economics at your fingertips  
 

Hybrid IGDT-stochastic self-scheduling of a distributed energy resources aggregator in a multi-energy system

Morteza Vahid-Ghavidel, Miadreza Shafie-khah, Mohammad S. Javadi, Sérgio F. Santos, Matthew Gough, Darwin A. Quijano and Joao P.S. Catalao

Energy, 2023, vol. 265, issue C

Abstract: The optimal management of distributed energy resources (DERs) and renewable-based generation in multi-energy systems (MESs) is crucial as it is expected that these entities will be the backbone of future energy systems. To optimally manage these numerous and diverse entities, an aggregator is required. This paper proposes the self-scheduling of a DER aggregator through a hybrid Info-gap Decision Theory (IGDT)-stochastic approach in an MES. In this approach, there are several renewable energy resources such as wind and photovoltaic (PV) units as well as multiple DERs, including combined heat and power (CHP) units, and auxiliary boilers (ABs). The approach also considers an EV parking lot and thermal energy storage systems (TESs). Moreover, two demand response (DR) programs from both price-based and incentive-based categories are employed in the microgrid to provide flexibility for the participants. The uncertainty in the generation is addressed through stochastic programming. At the same time, the uncertainty posed by the energy market prices is managed through the application of the IGDT method. A major goal of this model is to choose the risk measure based on the nature and characteristics of the uncertain parameters in the MES. Additionally, the behavior of the risk-averse and risk-seeking decision-makers is also studied. In the first stage, the sole-stochastic results are presented and then, the hybrid stochastic-IGDT results for both risk-averse and risk-seeker decision-makers are discussed. The proposed problem is simulated on the modified IEEE 15-bus system to demonstrate the effectiveness and usefulness of the technique.

Keywords: Demand response; Distributed energy resources; Microgrid; Multi-energy system; Stochastic programming (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222031759
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:265:y:2023:i:c:s0360544222031759

DOI: 10.1016/j.energy.2022.126289

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222031759