Enhancement effects of adding internal heat exchanger on dual-pressure evaporation organic Rankine cycle
Jian Li,
Zhen Yang,
Jun Shen and
Yuanyuan Duan
Energy, 2023, vol. 265, issue C
Abstract:
Dual-pressure evaporation organic Rankine cycle shows a good outlook in the power generation of medium-to-low temperature heat. Adding internal heat exchanger (IHE) is an important potential way to enhance its performance. While, the impacts of adding IHE have not been analyzed especially. The effectiveness, quantitative enhancement effects, and suitable scenarios of adding IHE need to be studied. This paper quantitatively evaluates the enhancement effects of adding IHE in the typical series dual-pressure evaporation ORC (SDORC). Impacts of heat source temperature, outlet restraint, corrosion of cold source and heat source, and organic fluid type on the enhancement effects are analyzed. The suitable scenarios for adding IHE in SDORC are revealed. Results show that adding IHE can effectively enhance the thermo-economic performance of SDORC at a sufficiently high heat source temperature, and the specific investment cost will be reduced by 3.9%. Adding IHE is also effective in enhancing the thermodynamic performance of SDORC for heat sources with outlet restraint, with a net power growth of 6.1%. For SDORC, adopting IHE fits better in the application scenarios with high heat source temperature, restrained outlet temperature, corrosive fluids, and large molecular complexity of organic fluid. The enhancement effects are more significant.
Keywords: Internal heat exchanger; Organic Rankine cycle (ORC); Dual-pressure evaporation cycle; Thermo-economic performance; Performance enhancement (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222032157
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032157
DOI: 10.1016/j.energy.2022.126329
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().