Energy and environmental performance of photovoltaic cooling using phase change materials under the Mediterranean climate
Spyros Foteinis,
Nikolaos Savvakis and
Theocharis Tsoutsos
Energy, 2023, vol. 265, issue C
Abstract:
The energy and environmental performance of photovoltaic (PV) panel cooling, when using phase change materials (PCMs), was examined. Actual, long-term field data were collected from a PV and a PV-PCM system, both operating under Mediterranean conditions (Greece). The energy analysis revealed that even though cooling increases (9.4%) the panel's energy output, PCM cooling is associated with a high initial energy investment, leading to low energy-return-on-investment values (1.79) compared to PV (4.94). High energy payback times were observed for the PV-PCM (⁓14 years) compared to the PV system (⁓5 years). Furthermore, the life cycle assessment methodology revealed that PCM cooling increases PV's total environmental footprint by 21.9%. However, in the Greek context, the additional electricity attributed to PV cooling leads to significant environmental gains through fossil-fuel-dependent electricity substitution. Cooling can also decrease the rate of cell degradation and prolong PV useful life, leading to additional environmental gains. Due to PCM's initial high energy investment, other cooling technologies should also be examined since, apart from improving electricity output and stability, cooling can also reduce PV's impact on land use, increase the power sector's decarbonization, and address global warming's impact on PV performance by reducing temperature fluctuations and extremes on the panel's surface.
Keywords: Life cycle analysis (LCA); Thin-film photovoltaics; Solar panel temperature; Climate change; Energy return on investment; Energy payback; Bibliometric analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222032418
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032418
DOI: 10.1016/j.energy.2022.126355
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().