EconPapers    
Economics at your fingertips  
 

Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel

Yong Zhang, Shirong He, Xiaohui Jiang, Mu Xiong, Yuntao Ye and Xi Yang

Energy, 2023, vol. 267, issue C

Abstract: In order to solve the problems of gas transport and drainage performance in cathode flow field (CFF), a constriction straight channel (CSC) is proposed to enhance the convective mass transfer effect of gas and effectively discharge liquid water. By using three-dimensional (3D) multi-phase computational fluid dynamics (CFD) simulation, the influence of width, depth and length of CSC on proton exchange membrane fuel cell (PEMFC) is quantitatively analyzed. What's more, the influence of the number and arrangement of constriction is simulated. It is found that the increase of the number of constriction is beneficial to increase the average current density of FC, and the average current density of 9 is 2.22% higher than that of 7. Staggered arrangement of constriction (SAC) has better performance than parallel arrangement of constriction (PAC), with an average current density of 0.81% higher but a pressure drop of 30.45% lower. Finally, based on the above results, a full-scale cathode constriction flow field is established. The simulation results demonstrate that the novel flow field can significantly enhance the gas convection effect and effectively discharge the liquid water accumulated in the flow field, and the maximum water content of proton exchange membrane (PEM) is increased by 5.36%.

Keywords: Constriction straight channel; Convection effect; Mass transfer; Output performance; Design of flow field (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222034314
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034314

DOI: 10.1016/j.energy.2022.126544

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2024-12-28
Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034314