EconPapers    
Economics at your fingertips  
 

Developing criteria for advanced exergoeconomic performance analysis of thermal energy systems: Application to a marine steam power plant

Turgay Koroglu and Oguz Salim Sogut

Energy, 2023, vol. 267, issue C

Abstract: Advanced exergoeconomic analysis is a powerful tool to evaluate the economic improvement potential of a system, but it lacks providing information on the required investments to be made to improve the system and its components while considering cost-benefit assessments. In this paper novel criteria are introduced as an extension to fulfill the shortcomings of mentioned analysis and provide further insight about investment feasibility of components as well as the whole system including but not limited to the amount of avoided exergy destruction per unit renovating cost, the renovating cost to improve the efficiency, the amount of profit after renovation. The criteria are applied to a marine steam power plant to evaluate the system and its components. The results show that boiler has the highest avoidable exergy destruction cost of 77.4 $/h while the third stage of low-pressure turbine (LPT3) has the highest recovered exergy destruction per dollar invested. On the other hand, by investing in boiler, the saving potential is 36.8 $/h and on LPT3 it is 6.5$/h. It has been observed that the overall system has avoidable exergy destruction cost of 101$/h, while a 52.7 $/h part of it could be saved with the improvement investments made.

Keywords: Advanced exergoeconomic analysis; Advanced exergoeconomic performance criteria; Marine power plant; Energy systems; Exergy based evaluation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222034697
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034697

DOI: 10.1016/j.energy.2022.126582

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034697