EconPapers    
Economics at your fingertips  
 

The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios

Ayman Elshkaki

Energy, 2023, vol. 267, issue C

Abstract: Limiting global warming well below 2 °C requires substantial increase in the installation of low-carbon electricity generation technologies (EGTs). EGTs however require several critical materials and materials associated with considerable energy, water and CO2 emissions. This paper assesses the implications of materials and energy efficiencies for climate change mitigation potential of global energy transition scenarios (GETS). The analysis is carried out using a dynamic material flow-stock model for 21 materials and 15 scenarios combining GETS developed by international organizations including International Energy Agency (IEA) and Greenpeace (GP), materials scenarios, and energy, water, and emissions intensities scenarios. Materials related CO2 emissions are expected to constitute between 4% and 14% the emissions reported in the IEA Sustainable Development scenario, while expected to be between 10% and 28% in GP Advanced Revolution scenario. Increasing material efficiency and reducing emissions intensities (driven by increasing energy efficiency, renewable technologies in energy supply mix, and recycling) reduce cumulative emissions by 73.2% and 26.3% respectively, while both reduce emissions by 79.5%. Increasing materials efficiency in EGT, energy and water efficiency in mining activities mainly for iron, aluminium, and nickel, and recycling, combined with careful selection of EGTs are significant to realize the full potential of GETS in climate change mitigation.

Keywords: Global energy scenarios; Materials; Energy; Water; Efficiency; Recycling; CO2 emissions (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222034831
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034831

DOI: 10.1016/j.energy.2022.126596

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034831