Model construction and performance analysis for asymmetric compound parabolic concentrator with circular absorber
Xueyan Zhang,
Shuoxun Jiang,
Ziming Lin,
Qinghua Gui and
Fei Chen
Energy, 2023, vol. 267, issue C
Abstract:
Solar CPC (Compound Parabolic Concentrator, CPC) has advantages of static concentration, easy construction and wide application. In this paper, the A-CPC (Asymmetric Compound Parabolic Concentrator, A-CPC) with circular absorber operating at horizontal condition was studied. Based on the edge ray principle, the mathematical model of A-CPC with circular absorber was theoretically constructed, and the concentration performance was verified by the visual experiment. The study found that the average optical efficiency of A-CPC is 42.69% within the whole incidence angle, which is 9.2% higher than the S-CPC (Standard CPC, S-CPC) with the same specification. The results also showed that the maximum acceptable angle and the annual average daily direct radiation collection time of A-CPC reached 69° and 10.82 h, indicating the A-CPC has stronger adaptability to weather conditions. The total annual radiation collection amount of A-CPC, which is 3670 MJ/m2, has surpassed that of S-CPC with 2880 MJ/m2 by 27.4%. Economic analysis reveals that A-CPC can effectively save the total cost and has more friendly potential in application to engineering.
Keywords: Solar energy; CPC (Compound parabolic concentrator); Asymmetry; Optical efficiency; Radiation collection (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222034843
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034843
DOI: 10.1016/j.energy.2022.126597
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().