Numerical evaluation of the effect of swirl configuration and fuel-rich environment on combustion and emission characteristics in a coal-fired boiler
Minsung Choi,
Taegam Hwang,
Yeseul Park,
Xinzhuo Li,
Junsung Kim,
Kibeom Kim,
Yonmo Sung and
Gyungmin Choi
Energy, 2023, vol. 268, issue C
Abstract:
A numerical evaluation using mesh and models verified by comparison with experimental results was performed to investigate the effects of swirl configuration and fuel-rich environment on the flame phenomenon, uniformity of coal particles, and combustion characteristics in a 16-kWth coal-fired boiler. In addition, the suitability of the application of existing technologies to coal-fired power generation to reduce pollutant emissions and enhance the combustion efficiency was evaluated by calculating environmental costs based on the life cycle assessment method. The coal particles of the co-swirling flame were more uniformly dispersed than those of the counter-swirling flame because of the generation of the inner recirculation zone and exhaust tube vortex. Therefore, the burnout zone was evenly formed inside the boiler. Counter-swirling flames exhibit proportional results in terms of the increase or decrease in NOx emissions and unburned coal particles (UCPs) with swirl intensity. However, co-swirling flames have a synergistic effect that can reduce the NOx and UCPs emissions up to 102.4 ppm (@6%O2) and 1.23 g/m3, respectively. Considering the external environmental costs for NOx, SO2, CO2, and UCPs emissions for all fuel-rich environments, the application of air staging technologies can reduce the environmental costs from $0.003 to $0.015 per day.
Keywords: Swirl flow; Air staging technology; Coal-fired boiler; NOx emissions; Uniformity index; Environmental cost (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222034788
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:268:y:2023:i:c:s0360544222034788
DOI: 10.1016/j.energy.2022.126591
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().