Turbulent fluidization and transition velocity of Geldart B granules in a spout–fluidized bed reactor
Dongxiang Wang,
Shuang Fu,
Xiang Ling,
Hao Peng,
Xinjun Yang,
Fangyang Yuan,
Jiyun Du and
Wei Yu
Energy, 2023, vol. 268, issue C
Abstract:
A spout–fluidized bed reactor (SFBR) is a promising process intensification device used in energy chemical processes, such as combustion, gasification, powder preparation and chemical reaction. The reaction performance primarily depends on the flow behaviour of gas-solid in the reactor. This study examined the transition of flow regimes for Geldart B granules through spectral analysis of pressure drop fluctuations and visual observation, and the transition velocity of turbulent fluidization was analysed using the standard deviation of pressure gradient. An empirical model was proposed to predict the transition velocity. Eight types of regimes are identified, and the transition of flow regimes is dominated by the coalescing and breaking up of bubbles formed around the air distributor and spout. The turbulent fluidization in a SFBR has no obvious jet flow but cluster is formed, and the flows both in spout and anulus zone reach a superficial homogeneity. Owing to the spouted gas, the turbulent regime can be transformed from spout-fluidization at a high spouted gas velocity or slugging fluidization at a low spouted gas velocity. The turbulent fluidization does not occur simultaneously, the lower the bed region is, the higher the transition velocity will be. The spouted gas has an optimal inlet condition that can minimize the transition velocity. The transition velocity increases with the static bed height or granule size owing to the more inhomogeneous.
Keywords: Spout–fluidized bed reactor; Flow regime; Turbulent fluidization; Transition velocity; Process intensification (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223000233
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000233
DOI: 10.1016/j.energy.2023.126629
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().