EconPapers    
Economics at your fingertips  
 

A cascaded deep learning framework for photovoltaic power forecasting with multi-fidelity inputs

Xing Luo and Dongxiao Zhang

Energy, 2023, vol. 268, issue C

Abstract: Accurate forecasts of photovoltaic power (PVP) are essential to the production, transmission, and distribution of electricity in power systems. However, PVP output is strongly weather-dependent, and the forecasting of PVP is highly dependent on the quality of numerical weather prediction (NWP) data. In recent years, a huge volume of numerical weather observation (NWO) data which are strongly associated with PVP output have been collected on-site by widely-installed smart meters and sensors. Appropriately utilizing high-fidelity NWO, in addition to low-fidelity NWP, has great potential in promoting the forecasting capability of deep learning (DL) models. Therefore, this paper proposes a cascaded multi-fidelity deep learning (CMF-DL) framework, which is coordinately driven by the data of both NWO and NWP, to deal with the day-ahead PVP forecasting problem. The proposed CMF-DL framework possesses great compatibility, and thus it can be incorporated with various DL models, such as the long short-term memory (LSTM) model and the gated recurrent unit (GRU) model. Subsequently, incorporated with CMF-DL, two newly-developed forecasting models, i.e., CMF-LSTM and CMF-GRU, are proposed, and datasets from a real-life PV plant are utilized, to evaluate the feasibility and effectiveness of the proposed approaches. From the results, the proposed CMF-LSTM and CMF-GRU show greater forecasting capability and anti-noise ability than the basic LSTM and GRU. Both CMF-LSTM and CMF-GRU can accept noisy NWP data with up to 35% errors. Additionally, compared to the persistence model, the forecasting skills of CMF-LSTM and CMF-GRU can be significantly promoted by 39.87% and 44.02%, respectively. The proposed CMF-LSTM and CMF-GRU also achieve better day-ahead PVP forecasting performance than the widely-used reference models in previous works.

Keywords: Deep learning; Photovoltaic power forecasting; Multi-fidelity inputs; Numerical weather observation; Numerical weather prediction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223000300
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000300

DOI: 10.1016/j.energy.2023.126636

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000300