Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure
Siyuan Chen,
Yanhong Wang,
Xuemei Lang,
Shuanshi Fan and
Gang Li
Energy, 2023, vol. 268, issue C
Abstract:
Hydrogen storage in clathrate hydrate is considered to be a potential technology with high energy density. However, the problems of low gas storage capacity and slow hydrate formation hinder its application. In this work, several strengthen methods were investigated to improving hydrogen storage capacity and rate in epoxycyclopentane (ECP) hydrates at moderate pressure. The results showed that the ECP hydrate particles could promote the formation of hydrate. It was found that the gas storage capacity and the rate increased with the decrease in ECP hydrate particle sizes. After dispersing ECP hydrate particles on stainless steel mesh, the gas storage capacity can be further increased to 71.2 cm3/cm3hydrate (0.64 wt%), and the average gas storage rate can be further increased to 26.51 cm3/(cm3hydrate h−1). It was found that decreasing particle size of hydrate could increase the gas-solid interface area and raised the gas adsorption rate and adsorption amount. The stainless-steel mesh partitions improved the hydrogen storage capacity due to the good thermal conductivity that reduced the influence of hydrate formation heat and dispersing the hydrate particles that reduced the diffusion distance of hydrogen in the pores. These findings provide fundamental insights into the development of clathrate hydrate-based H2 storage technology.
Keywords: Clathrate hydrate; Hydrogen storage; Epoxycyclopentane; Hydrate particles; Stainless-steel mesh partitions (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223000324
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000324
DOI: 10.1016/j.energy.2023.126638
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().