EconPapers    
Economics at your fingertips  
 

Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand

Charan Sekhar and Ratna Dahiya

Energy, 2023, vol. 268, issue C

Abstract: Buildings consume about half of the global electrical energy, and an accurate prediction of their electricity consumption is crucial for building microgrids' efficient and reliable functioning, leading to profitability for users and utilities. This paper proposes a novel optimal hybrid strategy for building load prediction that combines bilateral long short-term memory (BiLSTM), convolution neural networks (CNN), and grey wolf optimization (GWO). The GWO obtains the optimal set of parameters of the CNN and BiLSTM algorithms. One-dimensional CNN is applied to extract the time series data feature effectively. The proposed strategy performance is investigated using four buildings having distinct characteristics with hourly resolution data. Results justify that the same technique can be applied effectively to different structures. The work compares and examines their performance with other cutting-edge technologies for the forecast for one day, two days, and a week. The findings demonstrate that the suggested GWO–CNN–BiLSTM technique performs more accurately than standard CNN-LSTM, CNN-BiLSTM, optimized BiLSTM, and traditional LSTM and BiLSTM techniques.

Keywords: Short-term load forecast; Bilateral long short-term memory; Convolution neural networks; Time series prediction; Grey wolf optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223000543
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000543

DOI: 10.1016/j.energy.2023.126660

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000543