EconPapers    
Economics at your fingertips  
 

Proton exchange membrane fuel cell model parameters identification using Chaotically based-bonobo optimizer

Ahmed Fathy, Hegazy Rezk, Abdullah G. Alharbi and Dalia Yousri

Energy, 2023, vol. 268, issue C

Abstract: Proton exchange membrane fuel cells (PEMFCs) have been considered the focus of study for energy conversion in various fields including the automobile sector. Nevertheless, PEMFCs face significant dynamic behavior that causes their properties to vary. Therefore, a precise parameter estimation is required to model the PEMFCs adequately. However, due to the complex and nonlinear nature of PEMFC, its parameter estimation is extremely difficult. This paper introduces a robust and efficient approach named Chaotically based-bonobo optimizer (CBO) for determining the unknown variables of the PEMFC model. The proposed method is an enhanced version of the basic bonobo optimizer (BO) where the chaos maps have been used to tune the BO parameters for boosting the optimizer accuracy and consistency. The CBO is examined with several datasets of different PEMFC (250 W and 500 W stacks) at various pressure and temperature levels. The proposed CBO has been evaluated statistically using Friedman, Wilcoxon signed-rank, and multiple comparison non-parametric tests versus recent state-of-the-art and basic BO. The analyses, fitting the datasets, and convergence curves affirm the significant enhancement that has been achieved via adaptive tuning of BO parameters as the algorithm achieved the highest consistency and accuracy with the fastest convergence speed. The standard deviation (STD) by CBO is in the range of [10−16, 10−18]; meanwhile, the basic BO has STD of [10−3, 10−7]. Moreover, CBO converges to the highest quality solution in less than 200 iterations. The non-parametric test has given a shred of evidence on existing significant difference between the proposed CBO, the BO, and the other state-of-the-arts.

Keywords: Bonobo optimizer (BO); Proton exchange membrane fuel cell (PEMFC); Parameters estimation; Meta-heuristic chaotic maps; Chaotic bonobo optimizer (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223000993
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000993

DOI: 10.1016/j.energy.2023.126705

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000993