State of health estimation with attentional long short-term memory network for lithium-ion batteries
Mingqiang Lin,
Jian Wu,
Jinhao Meng,
Wei Wang and
Ji Wu
Energy, 2023, vol. 268, issue C
Abstract:
With the rapid growth of electric vehicle production, the market demand for lithium-ion batteries also shows a high growth trend. The state of health (SOH) estimation of lithium-ion batteries plays an important role in ensuring the safe and stable operation of electric vehicles. In this paper, we propose a novel SOH estimation method based on an attentional long short-term memory network (LSTM) with multi-source features, in which we consider eight health indicators extracted by analyzing the incremental capacity (IC), differential temperature, and differential thermal voltammetry curves. Specifically, to better complement the description of the IC curves, the Wasserstein distance is introduced as a health factor. Moreover, to improve the performance of our estimation model, an attention mechanism is embedded in the LSTM model to focus more on the critical information. The local attention mechanism uses a fixed window centered to calculate the weight coefficients of attention to address the drawbacks of global attention mechanisms. Finally, the model and feature validation experiments are conducted on two datasets. The experimental results demonstrate that the LSTM based on the local attention mechanism outperforms the traditional LSTM and LSTM based on the global attention mechanism in terms of accuracy for SOH estimation.
Keywords: State of health; Lithium-ion batteries; Global attention mechanisms; Local attention mechanisms; Long short-term memory network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223001007
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:268:y:2023:i:c:s0360544223001007
DOI: 10.1016/j.energy.2023.126706
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().